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Abstract

Group formation tends to involve peer effects. In the presence of such complemen-
tarities, however, coalitional games need not have a nonempty core. With a restricted
preference structure, I provide new sufficient conditions for the nonemptiness of the
core of network games that involve pairwise complementarities between peers. The
conditions are twofold: (a) sign-consistency—all agents agree on the sign of the value
of any link—and (b) sign-balance—the enemy of my enemy is my friend. My conditions
provide a game-theoretic explanation for the longevity of the dichotomy of political
alliances in the contemporary world.
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The king who is situated anywhere immediately on the circumference of the conqueror’s

territory is termed the enemy. The king who is likewise situated close to the enemy,

but separated from the conqueror only by the enemy, is termed the friend [of the con-

queror].—Kautilya’s, Arthasastra

1 Introduction

It is well known that in the presence of general complementarities/substitutabilities, coali-

tional games need not have a nonempty core.1 Since it is challenging to find conditions for

the nonemptiness of a core with generality, one approach is to restrict preference structures.

This is the approach I take in this paper. Focusing on network games that involve pairwise

complementarities2 between peers that are relevant to political alliances, this paper provides

novel sufficient conditions for such games to have a nonempty core.

With pairwise complementarities, I focus on an additively separable payoff structure.

Within this structure, agents individually obtain additive payoffs from both direct bilateral

relations and indirect pairwise synergistic effects between peers.3 Such preferences with ad-

ditively separable pairwise complementarities are sometimes called binary quadratic program

(BQP) preferences.4

As a real-life example, partly for purposes of its national defense against countries such as

North Korea, the U.S. maintains bilateral defensive alliances with South Korea and Japan.
1See Shapley (1955) and Shapley and Scarf (1974).
2By pairwise complementarities, this paper means a complementarity between two agents from the perspective

of another agent to contrast with more general complementarities, such as a complementarity generated by three or
more agents from the perspective of another agent which can be captured by, e.g., a use of hypergraph.

3This paper uses “form a relation” and “form a link” interchangeably.
4Ausubel et al. (1997); Bertsimas et al. (1999); Candogan et al. (2015); and Candogan et al. (2018) consider

combinatorial auction problems in which a bidder receives payoffs from both individual goods and synergies between
a pair of goods in an additively separable manner. Their preference structures are categorized as BQP preferences.
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For the interoperability of militaristic cooperation among the three countries, the South

Korea-Japan relation is important to the U.S. When tension between South Korea and Japan

arose in 2019 and South Korea almost withdrew from the General Security of Military Infor-

mation Agreement with Japan, the U.S. made significant diplomatic efforts to reconcile the

two sides, since the withdrawal would have a negative effect on U.S. security interests.5 This

exemplifies how the indirect synergy between peers matters for forming multiple bilateral

relations. The implicit assumption here is that each formed bilateral relation is transparent

to every agent in the game. I exclude the situation in which one agent can secretly build

individual relationships with two agents and avoid the indirect synergy between them.

The definition of the core in this paper is the same as that in Jackson (2005), with

stability (no blocking coalition) and efficiency based on agents rather than links. To avoid

confusion, peer effects in this paper are different from externalities. While this paper allows

the allocation rule to be influenced by alternative network structures, a form of externalities

as in Jackson (2005), the value of a component of the network itself is not allowed to be

influenced by the network structure outside of the component, which is different from Navarro

(2007).6

With the restricted preference structure, there are two main conditions for the existence

of a nonempty core. To explain them, consider a valuation graph of agents that specifies a

surplus value from a potential link between two agents—i.e., the so-called “intrinsic value”

from Jackson and Wolinsky (1996). The first condition is that all agents agree on the sign

of the underlying surplus value of a potential link between any pair of agents. I call this
5See, e.g., https://www.japantimes.co.jp/news/2019/08/23/national/politics-diplomacy/japan-south-

korea-gsomia-intelligence-pact/.
6Also, see Navarro (2010) for externalities on component-wise value functions.
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condition the sign-consistency condition.

In this paper, surplus values are actual and are not values expected by the agents, to

avoid potential disagreements among the agents with respect to the magnitudes of the values.

While a conflict or tension between two countries could possibly be “beneficial” to another

country, I assume that if this country actually forms a relation with both of the countries,

then this country inevitably incurs the negative synergy. For example, during the Cold War,

Egypt at least ostensibly benefited from foreign aid competition between the Soviet Union

and the U.S.7 After all, Egypt terminated its relation with the Soviet Union in the 1970s

with Sadat’s termination of the Soviet-Egyptian Treaty of Friendship and Cooperation.8

The second condition is that for each agent, the associated valuation graph from this

agent’s perspective features the condition whereby the graph can be partitioned into a pair

of subgraphs such that each of the subgraphs consists of links whose values are positive

(positive edges), but the two subgraphs are connected by links whose values are negative

(negative edges). I call this condition the sign-balance condition. This condition has an

economically meaningful interpretation. For size-three coalitions, it is translated into the

principle that the enemy of my enemy is my friend (and the friend of my friend is my

friend). For each larger-size coalition, agents can be assigned to two groups, within which

agents are friends (or neutral), but across which agents are enemies.9

7Listing the amounts of foreign aid provided by the Soviet Union and U.S. to Egypt during the Cold War, Tomita
(1995) points out that Egypt relied upon foreign aid as a driving force of its growth and exploited the international
politics back then.

8See https://www.nytimes.com/1976/03/15/archives/new-jersey-pages-sadat-acts-to-end-pact-with-
soviet-cairo-signed-in.html.

9It has been established empirically that in addition to the state in which everyone is friends with each other, the
state in which the enemy of my enemy is my friend is most commonly observed in international relations (Maoz et al.
(2007)); publicly open social networks such as individual human relations in massive online game experiments (Szell
et al. (2010)); inter-gang violence (Nakamura et al. (2019)); trust/distrust networks among the users of a product
review website (Facchetti et al. (2011)); friends/foes networks of a technological news site (Facchetti et al. (2011));
and elections of Wikipedia administrators (Facchetti et al. (2011)).
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The existence result is obtained in the following way. The restriction of preferences

to the additively separable payoff structure with pairwise complementarities and the sign-

consistency condition allow me to explicitly express parameters on the positive or negative

synergies between B and C from the perspective of A. Furthermore, with the sign-balance

condition, one can categorize agents into a pair of groups as described above. Then, one can

let all of the agents be linked to each other within groups and not linked to anyone across

groups, if there are no large enough synergies for any agent that offset the negatives across

groups. For cases with large enough synergies that incentivize agents to form a relation

across groups, I use a linear programming approach to ensure no infinite loop of blocking

coalitions that hinder the existence of a nonempty core.10

2 Environment

Let 𝑁 = {1, … , 𝑛} be a finite set of agents, considered fixed in what follows. A network is an

undirected graph that is a list of unordered pairs of agents {𝑖, 𝑗}, where {𝑖, 𝑗} ∈ 𝑔 indicates

that 𝑖 and 𝑗 are linked under the network 𝑔. When it is unambiguous, I write 𝑖𝑗 to represent

{𝑖, 𝑗}. Let 𝑔𝑆 be the complete network (the set of all subsets of 𝑆 of size two) on 𝑆 ⊆ 𝑁.

Denote by 𝐺 = {𝑔 ∣ 𝑔 ⊂ 𝑔𝑁} the set of all possible networks on 𝑁. Furthermore, let 𝑁(𝑔)

be the set of agents who have at least one link in 𝑔.

A path in a network 𝑔 ∈ 𝐺 between agents 𝑖 and 𝑗 is a sequence of agents 𝑖1, … , 𝑖𝐾

such that 𝑖𝑘𝑖𝑘+1 ∈ 𝑔 for each 𝑘 ∈ {1, … , 𝐾 − 1} for some 𝐾 ≥ 2, with 𝑖1 = 𝑖 and 𝑖𝐾 =
10Note that this paper does not intend to provide any normative statements for such relations. For example,

the West cooperated with Hitler, Mussolini, and Franco when its enemy of the 1930s was Stalin (Saperstein (2004)).
Therefore, such a condition for stability does not justify any normative arguments for peace. Rather, this paper
provides one game-theoretic explanation for the reason why the dichotomy of political alliances such as the Cold War
can persist for a long time.

4



𝑗. A component of a network 𝑔 is a nonempty subnetwork 𝑔′ ⊂ 𝑔 such that (1) if 𝑖 ∈

𝑁 (𝑔′) and 𝑗 ∈ 𝑁 (𝑔′) where 𝑗 ≠ 𝑖, then there exists a path in 𝑔′ between 𝑖 and 𝑗, and (2)

if 𝑖 ∈ 𝑁 (𝑔′) and 𝑖𝑗 ∈ 𝑔, then 𝑖𝑗 ∈ 𝑔′. Denote by 𝐶(𝑔) the set of components of 𝑔.

A value function is a function 𝑣 ∶ 𝐺 → ℝ that determines the total value 𝑣(𝑔) for

each network 𝑔 ∈ 𝐺. The set of all possible value functions is denoted by 𝑉. As noted by

Jackson (2005), the value function contains a characteristic function of a cooperative game

as a special case, since it allows the value that accrues to depend on both the coalition

of agents involved and the network structure. A value function 𝑣 is component additive if

𝑣(𝑔) = ∑𝑔′∈𝐶(𝑔) 𝑣 (𝑔′) for any 𝑔 ∈ 𝐺. This paper restricts attention to the “interesting sub-

class of value functions” in which the value of a given component of a network is independent

of the structure of other components (Jackson (2005), p. 132). This precludes externalities

across (but not within) components of a network.

A network 𝑔 ∈ 𝐺 is efficient relative to a value function 𝑣 if 𝑣(𝑔) ⩾ 𝑣 (𝑔′) for all 𝑔′ ∈ 𝐺.

Given a value function 𝑣, its monotonic cover ̂𝑣 is defined by ̂𝑣(𝑔) = max𝑔′⊂𝑔 𝑣 (𝑔′) . A

monotonic cover is by definition monotonic in that ̂𝑣(𝑔) ≤ ̂𝑣(𝑔′) for 𝑔 ⊂ 𝑔′. A network game

is a pair (𝑁, 𝑣).

An allocation rule is a function 𝑌 ∶ 𝐺 × 𝑉 → ℝ𝑛 such that ∑𝑖 𝑌𝑖(𝑔, 𝑣) = 𝑣(𝑔) for all 𝑣 and

𝑔. An allocation rule determines how the value generated by a network is allocated among

the agents, either through their decisions or even by some outside intervention. A network

allocation pair 𝑔 ⊂ 𝑔𝑁 and (imputation) 𝑦 ∈ ℝ𝑛 is in the core of the network game (𝑁, 𝑣)

if ∑𝑖 𝑦𝑖 ⩽ 𝑣(𝑔) (feasibility) and ∑𝑖∈𝑆 𝑦𝑖 ⩾ ̂𝑣 (𝑔𝑆) (coalitional relationality), where 𝑔𝑆 is the

complete network on 𝑆, for all 𝑆 ⊂ 𝑁. An allocation rule 𝑌 is core consistent if, for any 𝑣

such that the core is nonempty, there exists at least one 𝑔 such that (𝑔, 𝑌 (𝑔, 𝑣)) is in the core.
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To describe sufficient conditions and obtain the existence result, I impose more struc-

ture on value functions. The exogenously given surplus value of a link among every pair

of agents from the perspective of agent 𝑖 is represented by a symmetric weight matrix or

interchangeably valuation graph of 𝑖, 𝑊 𝑖, where 𝑤𝑖
𝑖𝑗 ∈ ℝ for 𝑖 ≠ 𝑗 captures the value of a

link with agent 𝑗 from the perspective of 𝑖, while 𝑤𝑖
𝑗𝑘 ∈ ℝ for 𝑖 ≠ 𝑗 ≠ 𝑘 represents a pairwise

complementarity between potential peers 𝑗 and 𝑘 for 𝑖. I call an element of a valuation graph

an edge weight. An edge weight 𝑤𝑖
𝑖𝑗 indicates an actual value of forming a link with 𝑗 for 𝑖.

I assume that 𝑤𝑖
𝑖𝑖 = 𝑤𝑖

𝑗𝑗 = 0 for any 𝑖 and 𝑗 and 𝑤𝑖
𝑗𝑘 = 𝑤𝑖

𝑘𝑗.

A signed graph for agent 𝑖 is comprised of a pair 𝑅𝑖 = (𝑁, 𝑊 𝑖). The underlying graph

of 𝑅𝑖 is (𝑁, 𝐸𝑖), where 𝐸𝑖 contains a value edge (𝑖, 𝑗) whenever 𝑤𝑖
𝑖𝑗 ≠ 0 and a value edge

(𝑗, 𝑘) whenever 𝑤𝑖
𝑗𝑘 ≠ 0, which is not same as a link in a network but rather is essentially

an exogenously given link in a valuation graph. Notice that the value of each pair of agents

can differ among different agents captured by differences between 𝑊 𝑖 and 𝑊 𝑗 for 𝑖 ≠ 𝑗, to

account for heterogeneity in valuation and the costs of maintaining such relations.

I assume BQP preference structures on value function such that

∑
𝑖∈𝑁 ( ∑

𝑗∶{𝑖,𝑗}∈𝑔
𝑤𝑖

𝑖𝑗 + ∑
𝑗,𝑘∶{𝑖,𝑗},{𝑖,𝑘}∈𝑔

𝑤𝑖
𝑗𝑘)

= 𝑣(𝑔),

where 𝑤𝑖
𝑗𝑘 does not need to be zero even when 𝑗 and 𝑘 do not form a relation.
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3 Existence

I first describe the so-called sign-consistency assumption introduced by Candogan et al.

(2015).

Assumption 3.1. (Sign Consistency). For some 𝑖, 𝑗 ∈ 𝑁, if 𝑤𝑖
𝑖𝑗 > 0, then 𝑤𝑘

𝑖𝑗 ≥ 0 for all

𝑘 ∈ 𝑁, and similarly, if 𝑤𝑖
𝑖𝑗 < 0, then 𝑤𝑙

𝑖𝑗 < 0 for all 𝑙 ∈ 𝑁.

For example, if the relation between Japan and South Korea is negative, I assume that it

has nonpositive synergistic effects on all other countries when these countries actually form

a relation with both Japan and South Korea. While it is entirely possible that a country

may welcome the tension between the two countries, I assume that if this country actually

forms a relation with both of the countries, then this country inevitably incurs the negative

synergy.

Next, I introduce the so-called sign-balance assumption.11

Assumption 3.2. (Sign Balance). For all 𝑖 ∈ 𝑁, each cycle in 𝑅𝑖 has an even number of

negative edge weights.

Figure 1 shows examples of a sign-balanced graph. The two graphs on the left are sign

balanced, while the two on the right are not. Colloquially, the condition requires that the

enemy of my enemy is my friend.

My proof for the main result exploits the primal-dual relation between welfare-maximizing

solutions and the core. In particular, I first show that the following quadratic program (QP1)

has an integer-value solution12

11This is sometimes called the “structural balance condition (see, e.g., Altafini (2012)).”
12Following the standard of the engineering literature, I put optimization programming indexing such as (QP1)

in front of the optimization problem to distinguish it from equation numbering.
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(QP1)𝐻(𝑁) = maximize ∑
𝑘∈𝑁 (∑

𝑖≠𝑘
𝑤𝑘

𝑖𝑘𝑥𝑘
𝑖 + ∑

𝑖≠𝑗≠𝑘
𝑤𝑘

𝑖𝑗𝑥
𝑘
𝑖 𝑥𝑘

𝑗 )

subject to 𝑥𝑘
𝑖 = 𝑥𝑖

𝑘 ∀𝑖, 𝑘 ∈ 𝑁,

0 ≤ 𝑥𝑘
𝑖 ≤ 1 ∀𝑖, 𝑘 ∈ 𝑁,

where 𝑥𝑘
𝑖 = 1 if agent 𝑖 forms a relation with agent 𝑘, 0 < 𝑥𝑘

𝑖 < 1 if a fraction of agent 𝑖 and

𝑘 form a relation, and 𝑥𝑘
𝑖 = 0 if agent 𝑖 does not form a relation with agent 𝑘. Note that

if a fraction of agent 𝑖 and 𝑘 form a link, its interpretation is purely mathematical and has

no real-life meaning; for example, if 𝑥𝑘
𝑖 = 0.4, 40% of 𝑖 and 𝑘 form a link. For convenience,

define 𝑥𝑘
𝑘 = 0 for all 𝑘 ∈ 𝑁. Note that from an integral solution to (QP1), we can construct

a network.

The important property of a sign-balanced graph is so-called clusterability (Cartwright

and Harary (1956)). Fix 𝑖 ∈ 𝑁. The clusterability means that nodes of 𝑅𝑖 can be grouped

into two disjoint sets 𝑆1 and 𝑆2, within which edge weights between any two nodes are

nonnegative,

Notice that by sign consistency, the property implies that all agents can be grouped into

𝐿1 and 𝐿2 under 𝑅𝑗 for any 𝑗 ≠ 𝑖 meaning that all agents can be grouped into 𝐿1 and 𝐿2.

Let 𝐸+ = {(𝑖, 𝑗) ∶ 𝑤𝑘
𝑖𝑗 ≥ 0 for any 𝑘 ∈ 𝑁} and 𝐸− = {(𝑖, 𝑗) ∶ 𝑤𝑘

𝑖𝑗 < 0 for any 𝑘 ∈ 𝑁}. If

either 𝐿1 = ∅ or 𝐿2 = ∅, then the complete network is a solution which is integral. If both

are the empty sets, then a zero vector is the solution and therefore, the solution is integral.

Thus, suppose 𝐿1 and 𝐿2 are nonempty sets. The goal is to show the integrality of a
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solution to (QP1) and construct a dual that corresponds to the core of the game. To show

the integrality, I first introduce a new variable, 𝑧𝑘
𝑖𝑗 for each triplet 𝑖, 𝑗, 𝑘, to linearly relax the

quadratic terms in (QP1)13

(LP1) maximize ∑
𝑘∈𝑁 (∑

𝑖≠𝑘
𝑤𝑘

𝑖𝑘𝑥𝑘
𝑖 + ∑

𝑖≠𝑗≠𝑘
𝑤𝑘

𝑖𝑗𝑧
𝑘
𝑖𝑗)

subject to 𝑥𝑘
𝑖 ≤ 1 ∀𝑖, 𝑘 ∈ 𝑁

𝑥𝑘
𝑖 = 𝑥𝑖

𝑘 ∀𝑖, 𝑘 ∈ 𝑁

𝑧𝑘
𝑖𝑗 ≤ 𝑥𝑘

𝑖 , 𝑥𝑘
𝑗 ∀𝑘 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐸𝑘

+

𝑧𝑘
𝑖𝑗 ≥ 𝑥𝑘

𝑖 + 𝑥𝑘
𝑗 − 1 ∀𝑘 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐸𝑘

−

𝑥𝑘
𝑖 , 𝑧𝑘

𝑖𝑗 ≥ 0 ∀𝑖, 𝑗, 𝑘 ∈ 𝑁

We call this linearly relaxed formulation (LP1). Let 𝑥 be a vector of all 𝑥𝑘
𝑖 with |𝑁| × |𝑁|

dimension and 𝑧 be a vector of all 𝑧𝑘
𝑖𝑗 with |𝑁| × |𝑁| × |𝑁| dimension. Let 𝑜 = |𝑁|2 + |𝑁|3.

We present the constraints of (LP1) can be written as 𝐴𝑡 ≤ 𝑏, where 𝑡 is a column vector of

[𝑥 𝑧], 𝐴 is a matrix with 𝑜-by-𝑜 dimension whose elements 𝑎𝑞𝑝 are the coefficients of choice

variables in (LP1) which take value of 0 or 1, and 𝑏 is a column vector of constants that take

0 or 1 with 𝑜 dimension in (LP1).

A polyhedron 𝑃 ⊆ ℝ𝑜 is the set of all points 𝑡 ∈ ℝ𝑜 that satisfy a finite set of linear

inequalities, which can be mathematically expressed as

𝑃 = {𝑡 ∈ ℝ𝑜 ∶ 𝐴𝑡 ≤ 𝑏} .

13See Bertsimas et al. (1999) for a similar relaxation method in quadratic Boolean optimization problems at
Section 2.2 of their paper.

9



Note that both the feasible set and solution set of a linear program are certain polyhedra. A

matrix is called totally unimodular if and only if the determinant of each square submatrix

has value 1, -1 or 0. 𝐴 is a network matrix if its entry 𝑎𝑖𝑗 = 0, 1, or −1 for all 𝑖, 𝑗 and each

column contains at most two non-zero entries of opposite signs. I will use the celebrated

Hoffman-Kruskal theorem from Hoffman and Kruskal (1956) that a solution to a linear

program is integral when its constraint matrix is totally unimodular, and a matrix is totally

unimodular when it is a network matrix as implied by Tutte (1965).

I prove the existence of an integral solution to (LP1) by extending the version of the proof

for the tree-valuation graph of Candogan et al. (2015) in one of Vohra’s blog posts (2014).14

The proof for the following lemma can be found in the Appendix. Note that the following

lemma is not implied by Bertsimas et al. (1999). They deal with surplus maximization of

one agent with a finite number of goods, while I study total welfare maximization of finitely

many agents in a network game.

Lemma 1. Let Assumptions 3.1 and 3.2 hold. Then, (LP1) has an integral solution.

Take an extreme point solution to (LP1), ( ̄𝑧, 𝑥̄). Then, since (LP1) is a linearly relaxed

version of (QP1), integral solutions coincide between the two programs, and thus 𝑥̄ is an

extreme point solution to (QP1) as well. Notice that since 𝑥̄ is a binary vector that takes

0 or 1 for each pair of agents, we can determine which pair forms a link based on 𝑥̄. That

is, we start with 𝑔𝑁, keep {𝑖, 𝑗} pair if 𝑥𝑖
𝑗 = 1 and take out from 𝑔𝑁 if 𝑥𝑖

𝑗 = 0 for any

𝑖 ≠ 𝑗 ∈ 𝑁. After doing this procedure for every pair of agents, we are left with 𝑔 such that

𝑣(𝑔) = ̂𝑣(𝑔𝑁) = 𝐻(𝑁).
14https://theoryclass.wordpress.com/2014/02/10/combinatorial-auctions-and-binary-quadratic-valuations-

postscript/
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Figure 1: Examples of a cycle in balanced and unbalanced graphs
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The two graphs on the left are balanced, and the ones on the right are unbalanced.

The integrality of a solution to (LP1) and thus (QP1) actually implies the nonemptiness

of the core. Deng et al. (1999) demonstrate that the core of a coalitional game is nonempty

if and only if the linear programming formulation of the game has an integral solution. The

following lemma is implied by Theorem 1 of their paper.15

Theorem 1. Let Assumption 3.1 and 3.2 hold. Then, the core is nonempty.

One may wonder if the core of a coalitional game in this paper is nonempty even without

the sign-balance condition. The example at the Appendix demonstrates that this is not the

case. Therefore, the sign-balance condition is indeed significant.

4 Conclusion

Focusing on network games that involve pairwise complementarities between peers, this pa-

per provides a novel sufficient condition for the nonemptiness of the core of a network games

that involve pairwise complementarities between peers that allows a new class of preferences

relevant to political alliances. The paper’s limitation is the lack of characterization of the

core.
15For readers to whom the application of Theorem 1 in Deng et al. (1999) is not immediate, my own proof is

available upon request.
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Appendix

Proof of Lemma 1

Proof. Before delving into the proof, let us define a network matrix. Matrix 𝐴 is a network

matrix if its entry 𝑎𝑖𝑗 = 0, 1, or −1 for all 𝑖, 𝑗 and each column contains at most two non-zero

entries of opposite sign. Notice that since the decision variables of (LP1) are all between 0

and 1, the feasible set is bounded. Since the feasible set is bounded, there exists an extreme

point solution to (LP1). Denote it by ( ̄𝑧, 𝑥̄). The goal is to show that ( ̄𝑧, 𝑥̄) is indeed integral.

As explained in the main text, by sign consistency and sign balancedness, all agents

can be grouped into two disjoint sets 𝐿1 and 𝐿2, which which edge weights between any

two nodes are nonnegative and across which edge weights between any two nodes are strictl

negative. If either 𝐿1 = ∅ or 𝐿2 = ∅, then the complete network is a solution to our

network game. This implies that the following program (LPL1), which is (LP1) when the

set of agents is restricted to 𝐿1, has an extreme point solution that is a vector of 1s:

(LP1L1) maximize ̄𝑣1(𝑥) ≡ ∑
𝑘∈𝐿1

(∑
𝑖≠𝑘

𝑤𝑘
𝑖𝑘𝑥𝑘

𝑖 + ∑
𝑖≠𝑗≠𝑘

𝑤𝑘
𝑖𝑗𝑧

𝑘
𝑖𝑗)

subject to 𝑥𝑘
𝑖 ≤ 1 ∀𝑖, 𝑘 ∈ 𝐿1

𝑥𝑘
𝑖 = 𝑥𝑖

𝑘 ∀𝑖, 𝑘 ∈ 𝐿1

𝑧𝑘
𝑖𝑗 ≤ 𝑥𝑘

𝑖 , 𝑥𝑘
𝑗 ∀𝑘 ∈ 𝐿1, (𝑖, 𝑗) ∈ 𝐸𝑘

+

𝑥𝑘
𝑖 , 𝑧𝑘

𝑖𝑗 ≥ 0 ∀𝑖, 𝑗, 𝑘 ∈ 𝐿1,

where 𝑥 is a |𝐿1|3 dimension vector whose entries are 𝑥𝑗
𝑖 for 𝑖, 𝑗 ∈ 𝐿1. We can define (LPL2)
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in a similar manner by relabelling 𝐿1 with 𝐿2, which has a vector of 1s as a solution. Denote

by 𝑏𝑎𝑟𝑣2 the objective function of (LPL2). If both are the empty sets, then a zero vector is

the solution and therefore, the solution is integral. Therefore, let us focus on the case when

both sets are nonempty.

Let 𝑃 be the solution set of (LPL1) and let 𝑃 ′ be that of (LPL2). Now, let {𝑋1, ..., 𝑋𝑛}

be the set of extreme points of 𝑃 for some natural number 𝑛 while {𝑌1, ..., 𝑌𝑛′} be that of

𝑃 ′ for some natural number 𝑛′.In fact, if all edge weights within the members of 𝐿1 and 𝐿2

are non-zero, then there is only one extreme point solution for each of (LPL1) and (LPL2).

Since a polyhedron is convex, all values of fractional solutions to (LPL1) can be expressed

by a convex combination of ̄𝑣1, and so are (LPL2) by a convex combination of ̄𝑣2. Let

∑𝑛
𝑟=1 𝜆𝑟 ̄𝑣(𝑋𝑟) be that for (LPL1) and ∑𝑛′

𝑟′=1 𝜁𝑟 ̄𝑣(𝑌𝑟′) be that for (LPL2), where ∑𝑛
1 𝜆𝑟 = 1

and ∑𝑛′

1 𝜁𝑟′ = 1.

Since the objective function of (LP1) is linear in its arguments, and since a polyhedron

is convex, the objective functional values of all fractional solutions and integral solutions to

(LP1) can be expressed as the sum of these convex combinations plus the sum of negative

weights between (𝑝, 𝑞) for all 𝑝 ∈ 𝐿1 and 𝑞 ∈ 𝐿2 pairs with decision variables 0 ≤ 𝑦𝑘
𝑝𝑞 ≤ 1.

Let 𝐸− be the set of negative edges restricted to those involving the vertices in 𝐿1. Then,

we can reformulate (LP1) into the following linear program:
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maximize
𝑛

∑
𝑟=1

𝜆𝑟 ̄𝑣1(𝑋𝑟) +
𝑛′

∑
𝑟′=1

𝜁𝑟 ̄𝑣2(𝑌𝑟′) − ∑
𝑘∈𝐿1

∑
(𝑝,𝑞)∈𝐸−

|𝑤𝑘
𝑝𝑞|𝑦𝑘

𝑝𝑞

subject to −
𝑛

∑
1

𝜆𝑟 = −1

−
𝑛′

∑
1

𝜁𝑟 = −1

𝑦𝑘
𝑝𝑞 ≤ 1 ∀𝑘 ∈ 𝐿1, (𝑝, 𝑞) ∈ 𝐸−

𝜆𝑟, 𝜁𝑟, 𝑦𝑘
𝑝𝑞 ≥ 0 ∀𝑟, 𝑘,

Notice that the constraint matrix of this linear program is a network matrix. This is because

each variable appears in at most one constraint with a coefficient of 1 or -1. A network matrix

is totally unimodular as implied by Tutte (1965). Since a linear program with a totally

unimodular constraint matrix has an integral solution as shown by Hoffman and Kruskal

(1956), there exists an integral solution in this program,. This implies that a combination of

some extreme points 𝑋𝑟 and 𝑌𝑟 together with {𝑦𝑘
𝑝𝑞} which is integral maximizes the objective

value of the above program. Notice that this combination can be expressed by ̄𝑡, implying

that ̄𝑡 is an integral solution as well. �

Example when Sign-Balancedness Fails

In this section, I shall show how violation of the sign-balance condition can result in an empty

core. Suppose we have two agents A and B with 𝑤𝐴
𝐴𝐵 = 𝑤𝐵

𝐴𝐵 = −100. Furthermore, suppose

there are thee more agents, C, D, and E with which agent A or B is considering forming a

relation, while agents D, E, and F are indifferent in forming relations with each other—i.e.,

18



Figure 2: Example without a core

C

4

D

4

E

6

2

-20

18

C

10

D

2

E

9

16

-17

4

The left graph corresponds to agent A’s valuation graph when restricted to agent C, D, and E, and the right graph
corresponds to that of B. The number above/below each node represents 𝑤𝑘

𝑘𝑖 for 𝑘 ∈ {A, B} and 𝑖 ∈ {C, D, E}, while
the number above each edge represents 𝑤𝑘

𝑖𝑗 for 𝑘 ∈ {A, B} and (𝑖, 𝑗) ∈ {{C, D}, {C, E}, {D, E}}.

𝑤𝑘
CD = 𝑤𝑘

CE = 𝑤𝑘
DE = 0 for 𝑘 ∈ {C, D, E}. Moreover, from these three agents’ perspectives,

there is no intrinsic benefit of forming a relation with A or B—i.e., 𝑤𝑘
A𝑘 = 𝑤𝑘

B𝑘 = 0 for

𝑘 ∈ {D, E, F}. Finally, assume that 𝑤𝑘
𝑘𝑖 for 𝑘 ∈ {A, B} and 𝑖 ∈ {C, D, E} and 𝑤𝑘

𝑖𝑗 for

𝑘 ∈ {A, B} and (𝑖, 𝑗) ∈ {{C, D}, {C, E}, {D, E}} are depicted by Figure 2. The graph on

the left corresponds to agents A’s value graph when restricted to agent C, D, and E, and the

graph on the right corresponds to that of B. The number above/below each node represents

𝑤𝑘
𝑘𝑖 for 𝑘 ∈ {A, B} and 𝑖 ∈ {C, D, E}, while the number above each edge represents 𝑤𝑘

𝑖𝑗 for

𝑘 ∈ {A, B} and (𝑖, 𝑗) ∈ {{C, D}, {C, E}, {D, E}}. In this example, any of the three agents C,

D, and E will not form a coalition with both A and B, due to the prohibitively high negative

synergy between A and B.

This example has an empty core. Just to illustrate how the infinite loop of blocking

occurs, let us look at an arbitrary start of this loop. Suppose agent A forms a relation with

C and E together, while agent B forms a relation with agent D. At a glance, this seems to be

an efficient outcome and thus achieves no blocking coalition. And yet, notice that if agent

A pays agent C less than 26, then agent C forms a blocking coalition with agent B and D.
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So, agent A has to pay agent C 26, and pays agent E no more than 2 since otherwise, agent

A would obtain a negative payoff. But then, agent B will leave agent D and form a blocking

coalition with agent E, paying her any amount in (2, 7) (since agent B can get at most 2

from matching with agent D).

Similar blocking processes will happen at any combination of coalition formation among

these five agents, and thus this is an example with an empty core when the sign-balance

condition is violated.
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